Ambiguity-Based Multiclass Active Learning

نویسندگان
چکیده

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Efficient Multiclass Boosting Classification with Active Learning

We propose a novel multiclass classification algorithm Gentle Adaptive Multiclass Boosting Learning (GAMBLE). The algorithm naturally extends the two class Gentle AdaBoost algorithm to multiclass classification by using the multiclass exponential loss and the multiclass response encoding scheme. Unlike other multiclass algorithms which reduce the K-class classification task to K binary classifi...

متن کامل

Adaptive Active Learning with Ensemble of Learners and Multiclass Problems

Active Learning (AL) is an emerging field of machine learning focusing on creating a closed loop of learner (statistical model) and oracle (expert able to label examples) in order to exploit the vast amounts of accessible unlabeled datasets in the most effective way from the classification point of view. This paper analyzes the problem of multiclass active learning methods and proposes to appro...

متن کامل

On Multiclass Active Learning with Support Vector Machines

In supervised machine learning, a training set of examples which are assigned to the correct target labels is a necessary prerequisite. However, in many applications, the task of assigning target labels cannot be conducted in an automatic manner, but involves human decisions and is therefore time-consuming and expensive. In the case of classification learning, the active learning framework has ...

متن کامل

Active Learning

This article has no abstract.

متن کامل

Multiclass Continuous Correspondence Learning

We extend the Structural Correspondence Learning (SCL) domain adaptation algorithm of Blitzer et al. [4] to the realm of continuous signals. Given a set of labeled examples belonging to a “source” domain, we select a set of unlabeled examples in a related “target” domain that play similar roles in both domains. Using these “pivot samples,” we map both domains into a common feature space, allowi...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: IEEE Transactions on Fuzzy Systems

سال: 2016

ISSN: 1063-6706,1941-0034

DOI: 10.1109/tfuzz.2015.2451698